Face Recognition from Still Images and Video

نویسندگان

  • Soma Biswas
  • Rama Chellappa
چکیده

Face recognition with its wide range of commercial and law enforcement applications has been one of the most active areas of research in the field of computer vision and pattern recognition. Personal identification systems based on faces have the advantage that facial images can be obtained from a distance without requiring cooperation of the subject, as compared to other biometrics such as fingerprint, iris, etc. Face recognition is concerned with identifying or verifying one or more persons from still images or video sequences using a stored database of faces. Depending on the particular application, there can be different scenarios, ranging from controlled still images to uncontrolled videos. Since face recognition is essentially the problem of recognizing a 3D object from its 2D image or a video sequence, it has to deal with significant appearance changes due to illumination and pose variations. Current algorithms perform well in controlled scenarios, but their performance is far from satisfactory in uncontrolled scenarios. Most of the current research in this area is focused toward recognizing faces in uncontrolled scenarios. This chapter is broadly divided into two sections. The first section discusses the approaches proposed for recognizing faces from still images and the second section deals with face recognition from video sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Video-based face recognition in color space by graph-based discriminant analysis

Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Beyond One Still Image: Face Recognition from Multiple Still Images or Video Sequence

While face recognition from a single still image has been extensively studied over a decade, face recognition based on a group of still images (also referred as multiple still images) or a video sequence is an emerging topic. Although a group of still images or a video sequence can be treated as a single still image in a degenerate manner, additional properties are present in multiple still ima...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Face Recognition Using More than One Still Image: What Is More?

While face recognition from a single still image has been extensively studied over a decade, face recognition based on more than one still image, such as multiple still images or a video sequence, is an emerging topic. Using more than one image introduces new recognition settings. In terms of recognition algorithm, multiple still images or a video sequence can be treated as a single still image...

متن کامل

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011